Finite-size effects for nested Bethe ansatz equations: analytical and numerical results for $\mathrm{SU}(\mathrm{N})$ and $\mathrm{O}(2 \mathrm{~N})$ magnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L347
(http://iopscience.iop.org/0305-4470/23/7/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:02

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Finite-size effects for nested Bethe ansatz equations: analytical and numerical results for $\mathrm{SU}(\mathbf{N})$ and $\mathrm{O}(2 N)$ magnets

Marcio Jose Martins \dagger
Department of Physics, University of California, Santa Barbara, CA 93106, USA

Received 1 December 1989

Abstract

We study the finite-size effects in the $\operatorname{SU}(N)$ and $\mathrm{O}(2 N)$ Bethe ansatz equations for ground-state configurations. We compare our results with a numerical solution of the associated Bethe ansatz equations.

Recently there has been a strong growth of interest in the study of Bethe ansatz equations (BAE) for a finite-size lattice (L). There is a large class of integrable gapless models soluble by the Bethe ansatz approach, and in this case the computation of finite-size effects for the eigenspectrum makes possible the calculation of conformal properties of these systems [1]. Another interest in this subject is the analysis of the deviations from the famous 'string' picture [2], usually assumed for calculating some properties of these integrable models in the thermodynamic limit. De Vega and Woynarovich [3] proposed a systematic method to compute the finite-size effects for the eigenspectrum of the integrable models when the solution of the associated bAE is characterised by a set of real roots. This method was generalised to include the nested Bethe ansatz equations [4] and for the spin $-\frac{1}{2} X X Z$ model with different types of boundary conditions [5]. More recently De Vega and Woynarovich [6] studied the finite-size effects in the bae for the $\mathrm{SU}(2)$ spin-s Heisenberg model, reformulating their previous method [3] in order to include the case where the set of bae roots is complex. In this letter we use this generalised method to study the effects of finite size in the imaginary part of the nested baE roots for $\operatorname{SU}(N)$ and $\mathrm{O}(2 N)$ integrable magnets.

The nested bae for $\operatorname{SU}(N)$ integrable models is given by [7]:

$$
\begin{equation*}
\prod_{\substack{p=1 \\ j \neq p}}^{n_{r}} \frac{\lambda_{j}^{r}-\lambda_{p}^{r}-\mathrm{i}}{\lambda_{j}^{r}-\lambda_{p}^{r}+\mathrm{i}} \prod_{l \in L_{r}} \prod_{p=1}^{n_{l}} \frac{\lambda_{j}^{r}-\lambda_{p}^{\prime}+\mathrm{i}\left[(m-1) \delta_{r, 1}+1\right] / 2}{\lambda_{j}^{r}-\lambda_{p}^{l}-\mathrm{i}\left[(m-1) \delta_{r, 1}+1\right] / 2}=1 \tag{1}
\end{equation*}
$$

where $j=1, \ldots, n_{r}, r=1, \ldots, N-1, L_{r}=\{r-1, r+1\}, \lambda_{j}^{0}=n_{N}^{0}=0$ and $n_{0}=L$ is the lattice size.

[^0]The ground state of this system (1), for finite L, is characterised by a set of roots $\lambda_{j, p}^{r}$, given by

$$
\begin{equation*}
\lambda_{j, p}^{r}=\lambda_{j}^{r}+\frac{1}{2} \mathrm{i}(m-2 p-1)+\mathrm{i} \delta_{j, p}^{r} \tag{2}
\end{equation*}
$$

with $p=0, \ldots, m-1, r=1, \ldots, N-1$ and $\delta_{j, p}^{r}=-\delta_{j, m-p-1}^{r}$. In (2) the λ_{j}^{r} are real numbers and $\delta_{j, p}^{r}$ are the deviations from the solutions in the thermodynamic limit $L \rightarrow \infty$ (string picture). Strictly at $L \rightarrow \infty$ (1) and (2) can be manipulated for a given set of $N-1$ coupled integral equations for the densities $\sigma^{r}\left(\lambda_{j}^{r}\right)$ of $\lambda_{j}^{r}, r=1, \ldots, N-1$. In this case these integral equations can be solved by standard Fourier techniques, and the $\sigma^{r}(x)$ are given by [7]:

$$
\begin{equation*}
\sigma^{r}(x)=\frac{1}{N} \frac{\sin [\pi(N-r) / N]}{\cosh (2 \pi x / N)+\cos [\pi(N-r) / N]} . \tag{3}
\end{equation*}
$$

For finite L the first non-null $\delta_{j, p}^{r}$ deviations appear at $m=2$. In this case the roots of (2) can be rewritten as

$$
\begin{equation*}
\lambda_{j}^{r, \pm}=\lambda_{j}^{r} \pm \mathrm{i}\left(\frac{1}{2}+\delta_{j}^{r}\right) \quad r=1, \ldots, N-1 \tag{4}
\end{equation*}
$$

where + , - means $k=1,2$ in (2), respectively. The δ_{j}^{r} dependence of finite L can be calculated using the procedure developed in [6]. First we substitute (2) into (1), and taking the logarithm we may transform the products (1) into sums. The evaluation of these sums can be done using an extended Euler-Maclaurin formula that includes important non-analytical effects in $O(1 / L)$ [6], and here we give only the final results. The deviations δ_{j}^{r} satisfy a set of coupled equations, given by

$$
\begin{align*}
& \pi \alpha_{0}^{r}\left(\lambda_{j}^{r}\right)+\frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d} x \alpha_{0}^{r}(x)\left[\psi_{1}^{\prime}\left(\lambda_{j}^{r}-x\right)+\phi_{1}^{\prime}\left(\lambda_{j}^{r}-x\right)\right] \\
& \quad-\frac{1}{2} \sum_{p=r+1, r-1} \int_{-\infty}^{+\infty} \mathrm{d} x \alpha_{0}^{p}(x)\left[\psi_{1 / 2}^{\prime}\left(\lambda_{j}^{r}-x\right)+\phi_{1 / 2}^{\prime}\left(\lambda_{j}^{r}-x\right)\right] \\
&+\log \left[1-\mathrm{e}^{-2 \pi \alpha_{0}^{r}\left(\lambda_{j}^{r}\right)}\right]=0 \tag{5}
\end{align*}
$$

where $\alpha_{p}^{r}(x)=2 L \sigma^{r}(x) \delta_{p}^{r}(x), r=1, \ldots, N-1$ and $\alpha_{p}^{N}(x)=\alpha_{p}^{0}(x)=0$. The functions $\psi_{a}(x)$ and $\phi_{a}(x)$ differ only in the cut structure [6], and are defined by

$$
\begin{equation*}
\psi_{a}(x)=\frac{1}{\mathrm{i}} \log \left(\frac{1+\mathrm{i} x / a}{1-\mathrm{i} x / a}\right) \quad \phi_{a}(x)=\frac{1}{\mathrm{i}} \log \left(\frac{x-\mathrm{i} a}{x+\mathrm{i} a}\right) . \tag{6}
\end{equation*}
$$

Equation (5) admits the choice $\alpha_{0}^{r}(x)=\alpha_{0}^{r}$, independent of variable x. In this case the integration upon x can be easily done, and we have:

$$
\begin{equation*}
2 \pi \alpha_{0}^{r}-\pi\left(\alpha_{0}^{r+1}+\alpha_{0}^{r-1}\right)=-\log \left[1-\mathrm{e}^{-2 \pi \alpha_{0}^{\prime}}\right] . \tag{7}
\end{equation*}
$$

The solution of these equations (7) for α_{0}^{1} and arbitrary N is

$$
\begin{equation*}
\alpha_{0}^{1}=\frac{1}{\pi} \ln \left\{\left[\cos \left(\frac{(\pi / 2)[(N / 2)-1]}{(N / 2)+1}\right)\right]\left[\cos \left(\frac{N \pi / 4}{(N / 2)+1}\right)\right]^{-1}\right\} \tag{8}
\end{equation*}
$$

and the other $\alpha_{0}^{r}, r=2, \ldots, N-1$ can be determined using (8) in (7). In order to verify these analytical calculations we solve numerically (1) [8]. In table $1(a)$ we compare the analytical results (8) with the numerical solution of (1) for δ_{j}^{r} in the case $N=3,4$. The analytical results are better for roots where the real part is not too close to the

Table 1. The deviations for numerical (δ_{0}^{r}) and analytical (Δ_{0}^{r}) calculations for $\mathrm{SU}(N)$ group with $N=3,4$ and (a) $m=2$, (b) $m=3$. Here we consider the lattice size $L=24$ and the deviations are in the crescent order in index $r\left(\delta_{0}^{1}, \delta_{0}^{2}, \ldots, \delta_{0}^{N-1}\right)$.

(a) $\quad m=2$				b) $\quad m=3$			
SU(3)		SU(4)		SU(3)		SU(4)	
δ_{0}^{r}							
0.06983	0.07681	0.09902	0.10447	0.10126	0.11753	0.14650	0.16167
0.02279	0.02443	0.03187	0.03335	0.03293	0.03648	0.04722	0.05089
0.01326	0.01378	0.01792	0.01854	0.01909	0.02031	0.02648	0.02788
0.00945	0.00971	0.01232	0.01264	0.01358	0.01425	0.01818	0.01893
0.00751	0.00768	0.00946	0.00967	0.01079	0.01124	0.01396	0.01444
0.00644	0.00656	0.00783	0.00798	0.00924	0.00958	0.01550	0.01191
0.00584	0.00594	0.00687	0.00699	0.00839	0.00868	0.01012	0.01042
0.00558	0.00567	0.00632	0.00642	0.00801	0.00828	0.00931	0.00957
0.07631	0.08300	0.00607	0.00617	0.11076	0.12681	0.00894	0.00919
0.02858	0.03009	0.11691	0.14006	0.04119	0.04464	0.17406	0.17666
0.01967	0.02021	0.04856	0.05392	0.02825	0.02966	0.07267	0.08377
0.01693	0.01728	0.03028	0.03160	0.02431	0.02527	0.04514	0.04812
		0.02321	0.02394			0.03454	0.03622
		0.01991	0.02039			0.02961	0.03076
		0.01855	0.01895			0.02757	0.02855
		0.11594	0.11997			0.17206	0.18530
		0.04764	0.04916			0.07039	0.07409
		0.03624	0.03700			0.05343	0.05534

ends of the distributions of λ_{j}^{r}, in agreement with [6]. It is possible to generalise these calculations for arbitrary m, and now we have

$$
\begin{align*}
& 2 \pi \alpha_{p}^{r}-\pi\left(\alpha_{p}^{r+1}+\alpha_{p}^{r-1}\right)=-\log f_{p}^{r}\left(\alpha_{p}^{r}, \alpha_{p+1}^{r}, \alpha_{p-1}^{r}\right) \\
& f_{p}^{r}=\frac{1-\exp \left[-\pi\left(\alpha_{p}^{r}-\alpha_{p+1}^{r}\right)\right]}{1-\exp \left[-\pi\left(\alpha_{p-1}^{r}-\alpha_{p}^{r}\right)\right]} \quad p=1, \ldots[m / 2]-1 \tag{9}\\
& f_{0}^{r}=1-\exp \left[\pi\left(\alpha_{0}^{r}-\alpha_{1}^{r}\right)\right]
\end{align*}
$$

where $[m / 2]$ is the integer part of the ratio $m / 2$, and $\alpha_{p}^{r}=-\alpha_{m-1-p}^{r}$. For $m=3$ we have $\alpha_{0}^{r}=-\alpha_{2}^{r}, \alpha_{1}^{r}=0$, and in table 2 we show some values of constants α_{0}^{r} for $N=3$ and $N=4$. In table $1(b)$ we compare the results (9) and the numerical solution of (1). From tables $1(a)$ and $1(b)$ we find that the difference between analytical and numerical calculations is around 10%.

Table 2. Some values for constants α_{0}^{r} in the case of $\operatorname{SU}(N)$ symmetry and $N=3,4$.

r	$\mathrm{SU}(3)$	$\mathrm{SU}(4)$
1	0.2206356	0.2576995
2	0.2206356	0.3279582
3		0.2576995

Now let us consider the $O(2 N)$ magnets. The nested bae for integrable $O(2 N)$ magnets are [9]:

$$
\begin{equation*}
\prod_{\substack{p=1 \\ j \neq p}}^{n_{r}} \frac{\lambda_{j}^{r}-\lambda_{p}^{r}-\mathrm{i}}{\lambda_{j}^{r}-\lambda_{p}^{r}+\mathrm{i}} \prod_{l \in L_{r}} \prod_{p=1}^{n_{j}} \frac{\lambda_{j}^{r}-\lambda_{p}^{\prime}+\mathrm{i}\left[(m-1) \delta_{r, 1}+1\right] / 2}{\lambda_{j}^{r}-\lambda_{p}^{\prime}-\mathrm{i}\left[(m-1) \delta_{r, 1}+1\right] / 2}=1 \tag{10}
\end{equation*}
$$

where $j=1, \ldots, n_{r} ; r=1, \ldots, N-2,+,-$. Here $L_{r}=\{r-1, r+1\},\{N-3,+,-\}$, $\{N-2\}$ for $1<r<N-3, r=N-2, r=+,-$ respectively; $\lambda_{j}^{0}=0$ and $n_{0}=L$. The densities $\sigma^{r}(x)$ for these $\mathrm{O}(2 N)$ magnets, in the limit $L \rightarrow \infty$ are [9, 10]:

$$
\begin{align*}
& \sigma^{r}(x)=\frac{2}{N-1} {\left[\cos \left(\frac{\pi(N-r-1)}{2(N-1)}\right) \cosh \left(\frac{\pi x}{N-1}\right)\right] } \\
& \times\left[\cosh \left(\frac{2 \pi x}{N-1}\right)+\cos \left(\frac{\pi(N-r-1)}{N-1}\right)\right]^{-1} \quad r=1, \ldots, N-2 \tag{11}\\
& \sigma^{(+,-)}(x)=\frac{1}{2(N-1)}\left[\cosh \left(\frac{\pi x}{(N-1)}\right)\right]^{-1} .
\end{align*}
$$

In this case the equations for the deviations are the same as (9) for $r<N-2$ and for $r=N-2,+,-$, they are

$$
\begin{align*}
& 2 \pi \alpha_{p}^{N-2}-\pi\left(\alpha_{p}^{N-3}+\alpha_{p}^{+}+\alpha_{p}^{-}\right)=-\log f_{p}^{N-2} \tag{12}\\
& 2 \pi \alpha_{p}^{+,-}-\pi\left(\alpha_{p}^{+,-}+\alpha_{p}^{N-2}\right)=-\log f_{p}^{+,-}
\end{align*}
$$

For $m=2$ the solutions of (9) $(r<N-2)$ and (12) $(r=N-2,+,-)$ are

$$
\begin{align*}
& \alpha_{0}^{r}=r+1 \quad r=1, \ldots, N-2 \\
& \alpha_{0}^{+}=\alpha_{0}^{-}=\sqrt{N} . \tag{13}
\end{align*}
$$

It is interesting to observe that for the $O(2 N)$ group, α_{0}^{1} is independent of N since this does not occur for the $\operatorname{SU}(N)$. In table 3 we show some values of α_{0}^{r} for $\mathrm{O}(6)$ and $O(8)$ in the case $m=3$. In tables $4(a)$ and $4(b)$ we compare the numerical and analytical results for the deviations $\delta_{0}^{r}(x)$ for $\mathrm{O}(6)$ and $\mathrm{O}(8)$ with $m=2,3$ respectively. Again the differences are around 10%.

As a last remark it is convenient to rewrite (9) and (12) in a more simple form:

$$
\begin{equation*}
C \alpha_{p}=-\log f_{p} \tag{14}
\end{equation*}
$$

where α_{p}, f_{p} are vectors with components $\left(\alpha_{p}\right)_{r}=\alpha_{p}^{r},\left(f_{p}\right)_{r}=f_{p}^{r}$, and C is the Cartan matrix associated with Lie algebra $\mathrm{O}(2 N)$ and $\mathrm{SU}(N)$. A natural conjecture is that (14) continues to be valid for other simple Lie groups with an associated Cartan matrix C. The generalisation of this work for general Lie algebras and also the consideration of excited states we leave for a future work.

Table 3. Some values for constants α_{0}^{r} in the case of $O(2 N)$ symmetry and $N=3,4$, with $\alpha_{0}^{+}=\alpha_{0}^{-}$.

r	$\mathrm{O}(6)$	$\mathrm{O}(8)$
1	0.3279585	0.3366371
+	0.2576995	0.3366371
2		0.5374730

Table 4. The deviations for numerical (δ_{0}^{r}) and analytical (Δ_{0}^{r}) calculations for $\mathrm{O}(2 N)$ group with $N=3,4$ and (a) $m=2$, (b) $m=3$. Here we consider the lattice size $L=24$ and the deviations are in the crescent order in index $r\left(\delta_{0}^{1}, \delta_{0}^{2}, \ldots, \delta_{0}^{+}\right)$. We show only the results for δ_{0}^{+}, since $\delta_{0}^{+}=\delta_{0}^{-}$in the ground state.

(a)	$m=2$			(b)	$m=3$		
O(6)		O(8)		O(6)		$\mathrm{O}(8)$	
δ_{0}^{r}							
0.11644	0.11346	0.17895	0.17100	0.17353	0.17580	0.27242	0.26884
0.04678	0.05203	0.06649	0.06927	0.07008	0.08088	0.10186	0.10861
0.02735	0.02862	0.03743	0.03829	0.04084	0.04361	0.05725	0.05937
0.01907	0.01968	0.02472	0.02515	0.02841	0.02978	0.03780	0.03881
0.01449	0.01484	0.01788	0.01812	0.02158	0.02238	0.02731	0.02790
0.01156	0.01189	0.01378	0.01393	0.01734	0.01788	0.02103	0.02142
0.00978	0.00995	0.01171	0.01128	0.01455	0.01495	0.01705	0.01734
0.00851	0.00864	0.00946	0.00955	0.01265	0.01296	0.01435	0.01466
0.00763	0.00774	0.00832	0.00840	0.01135	0.01161	0.01270	0.01289
0.00705	0.00714	0.00758	0.00765	0.01048	0.01071	0.01567	0.01173
0.00669	0.00678	0.00713	0.00719	0.00995	0.01016	0.01088	0.01103
0.00652	0.00660	0.00692	0.00698	0.00969	0.00990	0.01056	0.01071
0.10725	0.11895	0.20673	0.17618	0.15913	0.17305	0.31576	0.27721
0.03824	0.03973	0.11028	0.12497	0.05662	0.06007	0.16985	0.19891
0.02399	0.02456	0.06602	0.06714	0.03542	0.03676	0.10188	0.10545
0.01838	0.01869	0.04778	0.04935	0.02711	0.02786	0.07365	0.07729
0.01578	0.01599	0.03743	0.03825	0.02326	0.02379	0.05763	0.05964
0.01470	0.01487	0.03097	0.03154	0.02166	0.02211	0.04766	0.04905
		0.02666	0.02707			0.04100	0.04202
		0.02370	0.02401			0.03644	0.03723
		0.02164	0.02190			0.03327	0.03392
		0.02052	0.02047			0.03113	0.03170
		0.01939	0.01959			0.02981	0.03032
		0.01898	0.01917			0.02917	0.02966
		0.01813	0.01728			0.02762	0.02715
		0.07168	0.07444			0.10979	0.11653
		0.04528	0.04616			0.06921	0.07147
		0.03476	0.03522			0.05308	0.05428
		0.02985	0.03015			0.04556	0.04638
		0.02782	0.02806			0.04244	0.04312

I gratefully thank F C Alcaraz for showing me [6] and J L Cardy for reading the manuscript. This work was supported partially by CNPQ and NSF Grant PHY.8614185.

References

[1] Cardy J L 1987 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York: Academic)
[2] Avdeev L V and Dorfel B D 1987 Theor. Math. Phys. 71272 Alcaraz F C and Martins M J 1989 J. Phys. A: Math. Gen. 22 L99
[3] de Vega H J and Woynarovich F 1985 Nucl. Phys. B 251439
[4] de Vega H J 1897 J. Phys. A: Math. Gen. 20 6023; 1988 J. Phys. A: Math. Gen 21 L1089
Susuki J 1988 J. Phys. A: Math. Gen. 211175
Woynarovich F and Eckle H-P 1987 J. Phys. A: Math. Gen. 20 L443
[5] Batchelor M T, Hamer C J and Quispel G R W 1987 J. Phys. A: Math. Gen. 20567
[6] de Vega H J and Woynarovich F 1990 Solution of the Bethe ansatz equations with complex roots for finite size: the spin $S \geqslant 1$ isotropic and anisotropic chains J. Phys. A: Math. Gen. 23 in press
[7] Johannesson H 1986 Nucl. Phys. B 270235
Sutherland B 1975 Phys. Rev. B 123795
[8] Alcaraz F C and Martins M J 1989 J. Phys. A: Math. Gen. 22 L865
[9] Reshetikhin N Yu 1985 Teor. Mat. Fiz. 12 347; Nucl. Phys. B 251565
[10] Martins M J 1990 Phys. Lett. A, in press

[^0]: † On leave from Departamento de Fisica, Universidade Federal de Sao Carlos, CP 676, Sao Carlos 13560, Brazil.

