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LETI’ER TO THE EDITOR 

Finite-size effects for nested Bethe ansatz equations: analytical 
and numerical results for SU(N) and q 2 N )  magnets 

Marcio Jose Martins? 
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 1 December 1989 

Abstract. We study the finite-size effects in the SU(N)  and O ( 2 N )  Bethe ansatz equations 
for ground-state configurations. We compare our results with a numerical solution of the 
associated Bethe ansatz equations. 

Recently there has been a strong growth of interest in the study of Bethe ansatz 
equations (BAE) for a finite-size lattice (L). There is a large class of integrable gapless 
models soluble by the Bethe ansatz approach, and in this case the computation of 
finite-size effects for the eigenspectrum makes possible the calculation of conformal 
properties of these systems [l]. Another interest in this subject is the analysis of the 
deviations from the famous ‘string’ picture [2], usually assumed for calculating some 
properties of these integrable models in the thermodynamic limit. De Vega and 
Woynarovich [3] proposed a systematic method to compute the finite-size effects for 
the eigenspectrum of the integrable models when the solution of the associated BAE 

is characterised by a set of real roots. This method was generalised to include the 
nested Bethe ansatz equations [4] and for the spin-; XXZ model with different types 
of boundary conditions [ 5 ] .  More recently De Vega and Woynarovich [6] studied the 
finite-size effects in the BAE for the SU(2) spin-s Heisenberg model, reformulating 
their previous method [3] in order to include the case where the set of BAE roots is 
complex. In this letter we use this generalised method to study the effects of finite 
size in the imaginary part of the nested BAE roots for SU(N)  and O(2N)  integrable 
magnets. 

The nested BAE for SU(N)  integrable models is given by [7]: 

where j = 1 ,  ..., n , , r = l ,  ..., N - l , L , = { r - l , r + l ) , A ~ = n & = O  and n o = L  is the 
lattice size. 

t On leave from Departamento de Fisica, Univenidade Federal de Sao Carlos, CP676, Sao Carlos 13560, 
Brazil. 
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The ground state of this system ( l ) ,  for finite L, is characterised by a set of roots 
A;,,, given by 

A:, = Ai+fi(m -2p - 1) (2) 

with p = O , .  . . , m - 1 ,  r =  1 , .  . . , N - 1  and SJ,,=-SJ,,,-,-,. In ( 2 )  the A i  are real 
numbers and SIp are the deviations from the solutions in the thermodynamic limit 
L+co (string picture). Strictly at L+co (1)  and (2) can be manipulated for a given 
set of N -  1 coupled integral equations for the densities a'(AJ) of A;, r = 1,. . . , N -  1.  
In this case these integral equations can be solved by standard Fourier techniques, 
and the a ' (x)  are given by [7]: 

1 
d ( x )  = - 

N cosh(2rxl N )  +cos[ r (  N - r ) /  NI * 

sin[ r (  N - r) /  NI 
(3) 

For finite L the first non-null Si,, deviations appear at m = 2. In this case the roots 
of (2) can be rewritten as 

A;* = A,' f i(4 + 8s) r = 1, .  . . , N - 1 (4) 

where +, - means k = 1,2 in (2), respectively. The S i  dependence of finite L can be 
calculated using the procedure developed in [6]. First we substitute (2) into ( l ) ,  and 
taking the logarithm we may transform the products (1) into sums. The evaluation of 
these sums can be done using an extended Euler-Maclaurin formula that includes 
important non-analytical effects in 0(1/ L) [6], and here we give only the final results. 
The deviations SJ satisfy a set of coupled equations, given by 

+m 

dxa;(x)[+i(Ai-x)+ +;(A; -x ) ]  

+a: 

-f 1 I dx dXx)[+;l2(AJ - x)  + +:12(AJ - x)I 
p=r+l,r-1 -m 

+log[ 1 - e-'*%(*;)] = 0 ( 5 )  

where (Y;(x) = 2Lar(x)6;(x), r = 1 , .  . . , N- 1 and a ; ( x )  = a i ( x )  = 0. The functions 
+,(x) and 4,(x) differ only in the cut structure [6], and are defined by 

Equation ( 5 )  admits the choice aL(x) = a& independent of variable x. In this case 
the integration upon x can be easily done, and we have: 

2ra;-r(aL+'+aL- l )= -log[l (7)  

The solution of these equations (7) for a; and arbitrary N is 

and the other a;, r = 2, . . . , N- 1 can be determined using (8) in (7). In order to verify 
these analytical calculations we solve numerically (1)  [8]. In table l ( a )  we compare 
the analytical results (8) with the numerical solution of (1)  for SJ in the case N = 3,4. 
The analytical results are better for roots where the real part is not too close to the 
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Table 1. The deviations for numerical (6;) and analytical (Ah) calculations for SU(N) 
group with N = 3,4 and ( a )  m = 2, (b)  m = 3. Here we consider the lattice size L = 24 and 
the deviations are in the crescent order in index r (SA, a,?,, . . . , S,"-'). 

0.069 83 
0.022 79 
0.013 26 
0.009 45 
0.007 51 
0.006 44 
0.005 84 
0.005 58 
0.076 31 
0.028 58 
0.019 67 
0.016 93 

0.076 81 
0.024 43 
0.013 78 
0.009 71 
0.007 68 
0.006 56 
0.005 94 
0.005 67 
0.083 00 
0.030 09 
0.020 21 
0.017 28 

0.099 02 
0.031 87 
0.017 92 
0.012 32 
0.009 46 
0.007 83 
0.006 87 
0.006 32 
0.006 07 
0.11691 
0.048 56 
0.030 28 
0.023 21 
0.019 91 
0.018 55  
0.115 94 
0.047 64 
0.036 24 

0.10447 
0.033 35 
0.018 54 
0.012 64 
0.009 67 
0.007 98 
0.006 99 
0.006 42 
0.006 17 
0.14006 
0.053 92 
0.031 60 
0.023 94 
0.020 39 
0.018 95 
0.119 97 
0.049 16 
0.037 00 

0.101 26 
0.032 93 
0.019 09 
0.013 58 
0.010 79 
0.009 24 
0.008 39 
0.008 01 
0.1 10 76 
0.041 19 
0.028 25 
0.024 3 1 

0.117 53 
0.036 48 
0.020 31 
0.014 25 
0.01 1 24 
0.009 58 
0.008 68 
0.008 28 
0.12681 
0.044 64 
0.029 66 
0.025 27 

0.146 50 
0.047 22 
0.026 48 
0.018 18 
0.013 96 
0.015 50 
0.010 12 
0.009 31 
0.008 94 
0.174 06 
0.072 67 
0.045 14 
0.034 54 
0.029 61 
0.027 57 
0.172 06 
0.070 39 
0.053 43 

0.161 67 
0.050 89 
0.027 88 
0.018 93 
0.014 44 
0.011 91 
0.010 42 
0.009 57 
0.009 19 
0.176 66 
0.083 77 
0.048 12 
0.036 22 
0.030 76 
0.028 55 
0.185 30 
0.074 09 
0.055 34 

ends of the distributions of A:, in agreement with [6]. It is possible to generalise these 
calculations for arbitrary m, and now we have 

27ra;-'rr(a;+'+a;-~)=-log f,(aL, a;+', a;- l )  

1 -exp[-'rr(aJ,-a;+,)] 
1 -e~p[-?r(a;-~-a;)] f ' =  p = l ,  ...[ m/2]-1 (9 )  

f;= l-exp[.rr(a;-a;)] 

where [ m / 2 ]  is the integer part of the ratio m / 2 ,  and a; = For m = 3 we 
have ah = -cy;, ai = 0, and in table 2 we show some values of constants a; for N = 3 
and N = 4. In table 1( b) we compare the results (9) and the numerical solution of 
(1). From tables l ( a )  and l (b )  we find that the difference between analytical and 
numerical calculations is around 10%. 

Table 2. Some values for constants CY; in the case of SU( N) symmetry and N = 3,4. 

1 0.2206 356 0.2576 995 
2 0.2206 356 0.3279 582 
3 0.2576 995 
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Now let us consider the O(2N) magnets. The nested BAE for integrable O(2N) 
magnets are [9]: 

“ I  AJ-A;+i[(m - l)Sr,,+ 1]/2 
p = l  A J  - A; + i la L, p = l  AS - A ,  - i[( m - l ) ~ % , ~  + 11/2 

n n  I = 1  

i + P  

where j = 1 ,  ..., n r ; r = l ,  . . . ,  N-2 ,+ , - .  Here L ,={r - l , r+ l} ,  {N-3,+,-}, 
{N-2)  for l < r < N - 3 ,  r = N - 2 ,  r = + , -  respectively; A Y = O  and n , = L .  The 
densities d ( x )  for these O(2N) magnets, in the limit L+co are [9,10]: 

2 n (N- r -1 ) )  cosh ( - rrx )] d ( X )  =- [cos( N - 1  2(N-1)  N - 1  

x [ cosh ( - 2? iX)+c0S(dN- r -1 ) ) ] -~  r = l y . . . y N - 2  (11) 
N - 1  N - 1  

In this case the equations for the deviations are the same as (9) for r < N - 2 and 
for r = N - 2, +, -, they are 

27ra,N-2-7r(ay-3+*;+a,) = -lOgf,N-* 

27ra;.- - rr(a;’-+ a,”-’) = -lOgfl.-. 

For m = 2 the solutions of (9) ( r  < N - 2) and (12) ( r  = N - 2, +, -) are 

a ; ) = r + l  r =  1, .  . . , N-2 

a ;  = a;  =a. 
It is interesting to observe that for the O(2N) group, a: is independent of N since 

this does not occur for the SU(N). In table 3 we show some values of aF, for O(6)  
and O(8) in the case m = 3. In tables 4(a) and 4(6) we compare the numerical and 
analytical results for the deviations 6;)(x) for O ( 6 )  and O(8) with m = 2,3 respectively. 
Again the differences are around 10%. 

As a last remark it is convenient to rewrite (9) and (12) in a more simple form: 

cap = -log& (14) 
where a,,,& are vectors with components (ap), = a;, (&, ) r  =fi, and C is the Cartan 
matrix associated with Lie algebra O(2N) and SU(N). A natural conjecture is that 
(14) continues to be valid for other simple Lie groups with an associated Cartan matrix 
C. The generalisation of this work for general Lie algebras and also the consideration 
of excited states we leave for a future work. 

Tible 3. Some values for constants a: in the case of O ( 2 N )  symmetry and N = 3.4, with 
a; = a;. 

1 0.3219 585 0.3366 371 
+ 0.2516 995 0.3366 371 
2 0.5374 730 
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Table 4. The deviations for numerical (66) and analytical (AA) calculations for O(2N)  
group with N = 3.4 and ( a )  m = 2, ( 6 )  m = 3. Here we consider the lattice size L = 24 and 
the deviations are in the crescent order in index r (SA, Si,. . . ,a:). We show only the 
results for S:, since 6: = Si in the ground state. 

0.11644 0.11346 
0.046 78 0.052 03 
0.027 35 0.028 62 
0.019 07 0.019 68 
0.014 49 0.014 84 
0.011 56 0.011 89 
0.009 78 0.009 95 
0.008 5 1 0.008 64 
0.007 63 0.007 74 
0.007 05 0.007 14 
0.006 69 0.006 78 
0.006 52 0.006 60 
0.107 25 0.118 95 
0.038 24 0.039 73 
0.023 99 0.024 56 
0.018 38 0.018 69 
0.015 78 0.015 99 
0.014 70 0.014 87 

0.178 95 
0.066 49 
0.037 43 
0.024 72 
0.017 88 
0.013 78 
0.011 71 
0.009 46 
0.008 32 
0.007 58 
0.007 13 
0.006 92 
0.206 73 
0.11028 
0.066 02 
0.047 78 
0.037 43 
0.030 97 
0.026 66 
0.023 70 
0.021 64 
0.020 52 
0.019 39 
0.018 98 
0.018 13 
0.071 68 
0.045 28 
0.034 76 
0.029 85 
0.027 82 

0.171 00 
0.069 27 
0.038 29 
0.025 I5 
0.018 12 
0.013 93 
0.01 1 28 
0.009 55 
0.008 40 
0.007 65 
0.007 19 
0.006 98 
0.176 18 
0.12497 
0.067 14 
0.049 35 
0.038 25 
0.031 54 
0.027 07 
0.024 01 
0.021 90 
0.020 47 
0.019 59 
0.019 17 
0.017 28 
0.074 44 
0.046 16 
0.035 22 
0.030 15 
0.028 06 

0.173 53 
0.070 08 
0.040 84 
0.028 41 
0.021 58 
0.017 34 
0.014 55 
0.012 65 
0.01 I 35 
0.010 48 
0.009 95 
0.009 69 
0.159 13 
0.056 62 
0.035 42 
0.027 11 
0.023 26 
0.021 66 

0.175 80 
0.080 88 
0.043 61 
0.029 78 
0.022 38 
0.017 88 
0.014 95 
0.012 96 
0.011 61 
0.010 71 
0.010 16 
0.009 90 
0.173 05 
0.060 07 
0.036 76 
0.027 86 
0.023 79 
0.022 11 

0.272 42 0.268 84 
0.101 86 0.108 61 
0.057 25 0.059 37 
0.037 80 0.038 81 
0.027 3 1 0.027 90 
0.021 03 0.021 42 
0.017 05 0.017 34 
0.014 35 0.014 66 
0.012 70 0.012 89 
0.015 67 0.011 73 
0.010 88 0.01 1 03 
0.010 56 0.010 71 
0.315 76 0.277 21 
0.169 85 0.198 91 
0.101 88 0.105 45 
0.073 65 0.077 29 
0.057 63 0.059 64 
0.047 66 0.049 05 
0.041 00 0.042 02 
0.036 44 0.037 23 
0.033 27 0.033 92 
0.031 13 0.031 70 
0.029 81 0.030 32 
0.029 17 0.029 66 
0.027 62 0.027 15 
0.109 79 0.116 53 
0.069 21 0.071 47 
0.053 08 0.054 28 
0.045 56 0.046 38 
0.042 44 0.043 12 

I gratefully thank F C Alcaraz for showing me [6] and J L Cardy for reading the 
manuscript. This work was supported partially by CNPQ and NSF Grant PHY.86- 
14185. 
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